Optimalisasi Execution Time Firefly Algorithm
Main Article Content
Abstract
Penelitian ini bertujuan untuk mencari nilai parameter optimal algoritma kunang-kunang dilihat dari waktu eksekusi yang dibutuhkan dalam menemukan solusi optimal pada kasus n-queens problem. Metode yang digunakan yaitu metode eksperimen dengan melakukan 10 kali percobaan pada setiap parameter dengan populasi 15 dan 50 kunang-kunang pada dimensi 10x10. Parameter optimal yang diperoleh yaitu α = 2.0, β = 1.0, dan γ = 0.2 dengan rata-rata waktu eksekusi 0.63776 detik pada populasi 15 kunang-kunang dan rata-rata waktu eksekusi 0.98321 detik pada populasi 50 kunang-kunang.
Article Details
References
Y. Huang, “Computing quantum discord is NP-complete Computing quantum discord is NP-complete,” 2014, doi: 10.1088/1367-2630/16/3/033027.
L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on metaheuristics for stochastic combinatorial optimization,” Nat. Comput., vol. 8, no. 2, pp. 239–287, 2009, doi: 10.1007/s11047-008-9098-4.
V. N. Rajput, K. S. Pandya, and K. Joshi, “Optimal coordination of Directional Overcurrent Relays using hybrid CSA-FFA method,” ECTI-CON 2015 - 2015 12th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol., 2015, doi: 10.1109/ECTICon.2015.7207044.
E.-G. Talbi, METAHEURISTICS - From Design To Implementation, vol. 66. 2012.
Y. Feng, G. G. Wang, and L. Wang, “Solving randomized time-varying knapsack problems by a novel global firefly algorithm,” Eng. Comput., vol. 34, no. 3, pp. 621–635, 2018, doi: 10.1007/s00366-017-0562-6.
S. Khalifehzadeh and M. B. Fakhrzad, “A modified firefly algorithm for optimizing a multi stage supply chain network with stochastic demand and fuzzy production capacity,” Comput. Ind. Eng., vol. 133, no. May, pp. 42–56, 2019, doi: 10.1016/j.cie.2019.04.048.
S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms and Their Relevance to the Real World: A Survey,” Int. J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349–7084, 2015, [Online]. Available: http://www.ijcert.org.
S. Sathyapriya, R. Stephen, and V. S. J. Irudayaraj, “Survey on N-Queen Problem with Genetic Algorithm,” no. 2, pp. 54–59, 2018.
K. C. Buño, F. G. C. Cabarle, M. D. Calabia, and H. N. Adorna, “Solving the N-Queens problem using dP systems with active membranes,” Theor. Comput. Sci., vol. 736, pp. 1–14, 2018, doi: 10.1016/j.tcs.2017.12.013.
A. Habiboghli and T. Jalali, “A Solution to the N-Queens Problem Using Biogeography-Based Optimization,” Int. J. Interact. Multimed. Artif. Intell., vol. 4, no. 4, p. 20, 2017, doi: 10.9781/ijimai.2017.443.
S. Mukherjee, S. Datta, P. B. Chanda, and P. Pathak, “Comparative Study of Different Algorithms to Solve N Queens Problem,” Int. J. Found. Comput. Sci. Technol., vol. 5, no. 2, pp. 15–27, 2015, doi: 10.5121/ijfcst.2015.5202.
A. Aquino, G. Denaro, and P. Salza, “Worst-Case Execution Time Testing via Evolutionary Symbolic Execution,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, vol. 2018-Octob, pp. 76–87, 2018, doi: 10.1109/ISSRE.2018.00019.
X. Qi, S. Zhu, and H. Zhang, “A hybrid firefly algorithm,” Proc. 2017 IEEE 2nd Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2017, pp. 287–291, 2017, doi: 10.1109/IAEAC.2017.8054023.
X. S. Yang, “Firefly algorithms for multimodal optimization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5792 LNCS, pp. 169–178, 2009, doi: 10.1007/978-3-642-04944-6_14.
M. A. Bramer and R. Ellis, “Programme chairs’ introduction,” Res. Dev. Intell. Syst. XXVI Inc. Appl. Innov. Intell. Syst. XVII, 2010, doi: 10.1007/978-1-84882-983-1.
X. S. Yang, “Firefly algorithm, stochastic test functions and design optimization,” Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010, doi: 10.1504/IJBIC.2010.032124.
X. Yang, “Stochastic Algorithms: Foundations and Applications,” vol. 5792, no. May, 2009, doi: 10.1007/978-3-642-04944-6.
D. A. Nggego, A. Setyanto, and Sukoco, “Implementasi Algoritma Firefly pada Kasus N-Queens Problem,” vol. 1, no. 10, pp. 219–227, 2020.
H. Wang et al., “Firefly algorithm with neighborhood attraction,” Inf. Sci. (Ny)., vol. 382–383, pp. 374–387, Mar. 2017, doi: 10.1016/j.ins.2016.12.024.